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We consider diffusion over a potential barrier for n degrees of freedom. 
Generalizing the procedure of Kramers, we find a quasistationary solution to the 
associated Fokker-Planck equation. This yields an expression for the diffusion 
current over the barrier and, finally, a simple and elegant generalization of 
Kramers'  formula for the diffusion rate. 
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1. INTRODUCTION 

As early as 1940, Kramers (0 proposed that induced nuclear fission can be 
viewed as a diffusion process over a potential barrier. On the basis of this 
picture, he wrote down and solved the Fokker-Planck equation for one 
degree of freedom, the fission variable x, in a quasistationary approxima- 
tion. This procedure yielded for the fission width Ff the following expres- 
sion: 

Ff = ~@ exp(- -VB W 

Here, V B > 0 is the height of the fission barrier, T the nuclear temperature, 
k Boltzmann's constant, and h Ptanck's constant divided by 2~r. The 
remaining factors are defined as follows. 
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Near the top x = x ~ of the barrier, the potential V(x) is written as 

V ( x ) - ~ � 8 9  x~ 2 with V <  0 (1.2) 

Moreover, V(x) has a local minimum at x = 0. This minimum defines the 
deformation of the nucleus before it undergoes fission. Near x = 0, we have 

g(x)~- �89 2 -  V B with W > 0  (1.3) 

The constant h is the positive root of the quadratic equation 

Mh 2 + flh + V = 0  (1.4) 

Here, M is the mass (inertial parameter) associated with the fission variable 
x, and fi is the friction constant. It is easy to show that 

0 <. h <<(IVI/M) '/2 (1.5) 

and that h decreases monotonically with increasing ft. Equation (1.1) yields 
an excellent approximation to the actual fission width as defined by the 
solution of the Fokker-Planck equation, except for very small values of fi 
(which are physically unrealistic in the nuclear context). Kramers' work has 
subsequently also found application to other problems not connected to 
nuclear physics like the autoionization of molecules. (2) 

In the present paper, we show that Kramer's method, and the result- 
ing formula (1.1), can easily be extended to a quasistationary diffusion 
process involving several (n) degrees of freedom. Such a generalization is 
called for in the nuclear context where it is known that several degrees of 
freedom are required to adequately describe the shapes of fissioning nu- 
clei. (3) It is conceivable that other problems to which the diffusion equation 
has been applied call for a similar extension. Several attempts have actually 
been made in this direction in the context of nuclear physics. (4,s) In the 
present paper, we carry the algebraic evaluation of Fy considerably beyond 
the stage attained in these papers. 

The problem of diffusion over a barrier in several dimensions has a 
long history, and several general mathematical approaches towards this 
problem exist which are considerably more powerful than the techniques 
used below. (See Ref. 6 for a recent review.) We believe, however, that our 
result given in Section 5 below has the advantage of displaying explicitly 
the dependence of the decay rate on the relevant parameters--the shape of 
the potential landscape, the mass tensor, and the friction tensor--and that 
it is therefore useful for a comparison with experimental data. 

In Section 2, we define the Fokker-Planck equation and generalize the 
quasistationary approximation of Kramers. The resulting eigenvalue equa- 
tion is shown in Section 3 to have only one positive root. For this solution, 
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the quasistationary current over the barrier is calculated in Section 4, and 
Section 5 contains a discussion of our results. 

2. QUASlSTATIONARY SOLUTION OF THE 
FOKKER-PLANCK EQUATION 

We consider n degrees of freedom with coordinates x I . . . . .  x n and 
velocities u 1 . . . . .  u n. The mass tensor M~ and the friction tensor fl0 
(i, j -- 1 . . . . .  n) are assumed to be real, symmetric, and positive definite. 
We also assume these tensors to be independent of x 1 . . . . .  x n although our 
procedure can be extended to allow for a smooth x-dependence of M and 
ft. The potential V ( x  1 . . . . .  xn) has a local minimum at x I = x 2 . . . .  
= x, = 0. This minimum defines the shape of the nucleus before it under- 
goes fission. Near  the minimum, we write 

V ( x ,  , . . . , x . )   jx, x ;  - ( 2 . 1 )  

where we use the summation convention. The matrix W~j is real, symmetric, 
and positive definite. We also assume that V ( x  t . . . . .  x , )  has a single 
saddle point at x i = x ~ Near  this point, we have 

V ( x ,  . . . . .  x , )  ~ �89 V~j(x i - x~  . (x j  - x f )  (2.2) 

Comparison of Eqs. (2.1) and (2.2) shows that V B > 0 defines the height of 
the fission barrier. To make sure that there exists only a single fission path 
connecting the minimum at x i = 0 with the asymptotic domain, we assume 
that the real and symmetric matrix V~j has one negative and (n - 1) positive 
eigenvalues. This assumption is crucial for all that follows. 

The probability density W ( x  1 . . . .  , xn ; u I . . . . .  un ; t) in phase space, 
a function of time t, obeys the following Fokker-Planck equation: 

~ W  + u  a W  OV ~ W  
Ot ~ -- ( M - l ) l  j ~X i Ob!j 

- ~ W] ~2 au, [ (M-1) /J  ~jkUk -.k ~ ( D i j  W )  (2.3) 

The diffusion tensor D o �9 is connected with the friction tensor fig through the 
generalized Einstein relation (fluctuation-dissipation theorem) 

D~j = K T ( M  - ' ) i lBtm ( M  -1)m j (2.4) 

The Fokker-Planck equation (2.3) describes nuclear fission as a diffusion 
process in an n-dimensional potential landscape. The diffusion is triggered 
by the coupling of the x I . . . .  , x~ to the other degrees of freedom of the 
system. This coupling is summarily described by the friction tensor rio" The 
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other degrees of freedom act as a heat bath of temperature T. This 
description is adequate if we consider induced nuclear fission since the 
nucleonic degrees of freedom excited in a nuclear reaction induced by light 
projectiles equilibrate over a time scale short in comparison with typical 
fission times as given by the ratio of the mass over the nuclear friction 
constant. The use of the temperature concept is permitted as long as the 
nuclear excitation energy is substantially larger than the height V B of the 
fission barrier since then the energy spent on climbing the barrier does not 
affect the nuclear temperature. 

It is convenient to simplify Eq. (2.3) by a change of variables. We 
introduce the matrix M 1/2, avoiding a sign ambiguity by requiring the 
eigenvalues of M 1/2 to be all positive. We define (i = 1 . . . . .  n) 

Yi  ~ ( M 1 / 2 ) i j x j ,  si = ( M 1 / 2 ) i j u j  

(2.5) 
y9 = ( M -  1/2)i1 fll,n(M-1/2)m j 

With these definitions and Eq. (2.4), Eq. (2.3) takes the form 

~ W  _[_s i O W  _ O V  . ~ W  _ ~ ~2 
•---[- i)Yi OYi 3si Osi (Yijsj W)  + krVi j ~ W (2.6) 

where W is now a function of y~ . . . . .  Yn ; sl . . . .  , sn ; t and V a function of 
Yl . . . . .  Yn- In the new variables, the location of the saddle point is given 
by (yl ~ 0) . . . .  y~ . Since fl is positive definite, so is 7. 

To describe the quasistationary diffusion process (the leakage of prob- 
ability density from the local minimum at Yi = 0 over the saddle point to 
the asymptotic region), we generalize Kramers' original ansatz (1) for W as 
follows: 

W ( y l  . . . . .  Yn  ; s l ,  " �9 �9 , Sn) 

= F(y  I . . . .  , y ~  ; s l ,  . . . , s ~ )  

( ' ) x e x p  - 2 ~  Isisi + 2 V ( y l ' ' ~  (2.7) 

The last factor represents the equilibrium phase space density and, taken by 
itself, could not describe any diffusion. This shortcoming is made up for by 
the function F which is chosen to be unity at Yi = 0, and zero asymptoti- 
cally. Substitution of Eq. (2.7) into Eq. (2.6) yields for F the equation 

Si~vF OV O F _  s,/ O__F_F 2 2 
Oy i OS i i ij OSj "[- kTyij ~ r (2.8) 

, /  g 

We are interested in determining F near the saddle point yO, and we 
therefore evaluate 0 V/Oy i by using Eq. (2.2), and by defining 

~Pij = ( M -I/2)izV,, ~ ( M -,/2),,,j (2.9) 
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The matrix 9) has one negative and (n - 1) positive eigenvalues (as does V). 
This important assertion is obvious if M is a multiple m (m > 0) of the unit 
matrix. In the general case, we observe that Eq. (2.9) implies 

detM- detq~ = det V (2.10) 

and that (detM) can be obtained by continuous deformation of det(ml) 
= m n, keeping all the eigenvalues positive. Under this operation, detep 
obviously keeps its sign. Since detcp equals the product of the eigenvalues 
of % and since the latter depend continuously on the eigenvalues of M, the 
assertion follows. 

Returning to Eq. (2.8) we require (as did Kramers) that F depends in 
the vicinity of the saddle point only on a single linear combination 7/of the 
variables Yi - yO and s i, 

F =  F(B) with ,q = ais i - b i ( y  i - y? )  (2.11) 

Then, Eq. (2.8) takes the form 

OF kT(aiY~jaj)  ~2~ (2.12) 

This is consistent with the ansatz (2.11) only if the content of the square 
bracket is a multiple ( - H )  of ~. This condition, which must hold for any 
choice of s i and ( y i -  yO), implies that a i and b i obey the set of linear 
equations 

(vo. - bi = 0 
(2.13) 

ep~jaj + Hb~ = 0 

These equations have a solution if H is a root of the equation 

det( Y+H'lep H.I-1) = 0  (2.14a) 

which can also be written in the form 

det(H 2. 1 + H y  + rp) = 0 (2.14b) 

Given such a solution, Eq. (2.12) implies for F the form 

__q_c ' /2  
F ( ~ ) = (  2 ~ k T ]  "f_'o/~exp( - c~2 (2.15) 

where 

G = H . ( a i Y i j a j )  -1 (2.16) 

Equation (2.15) is meaningful only for G > 0. This and the positive 
definiteness of y imply H > 0: H must be apos i t i ve  root of Eq. (2.14). We 
now show that exactly one such root exists. 
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3. THE EIGENVALUE EQUATION (2.14) 

For z real and z/> O, we consider the matrix 

A(z) = z7 + ~ (3.1) 

Since A (z) is real and symmetric, there exists for each z an orthogonal 
transformation O(z) which diagonalizes A. The eigenvalues oi(z ), i = 
1 . . . . .  n of A increase monotonically with z. To show this we calculate 

d [O(z)A(z)OT(z)]ii  = (o70Y)ii  (3.2) 

We have used OO 7"= 1 and the definition (3.1). The assertion now follows 
since 7 is positive definite: 

d --~Z Oi(Z) > 0 for all i and z 1> 0 (3.3) 

For z = 0, the oi(0) are equal to the eigenvalues q~i of ~00., with ~01 < 0 and 
q~t > 0, l >/2. For z ---> 0o, the oi tend towards the eigenvalues of z - "/which 
are all positive. This and relation (3.3) imply that ol(z ) > 0 for I >/2 and 
0 < z < r and that Ol(Z ) increases monotonically from its value -Ir at 
z = 0, intersecting the real z axis at some finite value of z. 

Returning to Eq. (2.14b), we multiply both sides by de t (O(H))  and by 
det(or(H)).  This yields 

det(H28ij+oi(H)6i;)= f i [ H 2 + o i ( H ) l = O  (3.4) 
i = l  

For H > 0  we have H 2 + o / ( H  ) > 0  if I> /2 ,  while H 2 + o l ( H  ) rises 
monotonically with H from its value -Iq011 at H = 0, intersecting the real H 
axis at some finite value of H. This proves the assertion. 

The construction just used can also be applied to determine the range 
of values of the positive root of Eqs. (2.14). Since o I increases monotoni- 
cally with increasing strength t3 o (fl0 > 0) of the matrix 7 (or of the friction 
tensor fl), the root of Eq. (2.14) decreases monotonically with fl0, 

dH a~--~ < 0 (3.5) 

Moreover, H = I~ll ~/2 for 90 = 0. (Note that this limit makes no physical 
sense and is used here only to obtain an upper limit on H.) This and 
relation (3.5) imply 

o < I 11 (3.6) 
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4. THE DIFFUSION RATE 

The Fokker-Planck equation (2.6) implies the continuity equation 

o ~ ( a d s o W +  . . .  7-- ( ds 1 . . .  J - ~  ~~ ~ f f  ds.. s , W =  f~_ ds, 0 (4.1) at d - ~  

This shows that the current density, a vector in the n-dimensional space 
{Yl . . . . .  y , )  is given by 

f: f; ji = ds I . . .  ds, si W (4.2) 
oo oo 

The total diffusion current I is given by integrating j over the ( n -  1)- 
dimensional hyperplane S through the saddle point yO with normal vector 
in the direction of j. We calculate j and I, using for W the quasistationary 
expressions (2.7) and (2.15). 

Using 

siexp{ - 2 ~ s l s ,  ) = - k T  ~ i  e x p ( -  2 -~s t s t  ) 

and a partial integration, we reduce the calculation of j~ in Eq. (4.2) to an 
n-dimensional Gaussian integral. This yields 

j~ = a,( -~---]Gk T ] ~/2. (2~rk T) . /2  

{1 X (1 + Galal) -1/2. exp -- 2 k T  " G ym)bm] } 
I + Gata l "I ( ym  - o 2 

• exp[ - 2 ~ 1  (Yi -- y? )  I~/j (~j  -- yO) ] (4.3) 
L 

The eigenvalue equations (2.13) and the definition (2.16) of G imply 

G H H 2 
- - - -  > 0 ( 4 . 4 )  

1 + Gala l aiYija j + Hala t aicpoa j 

where we have also used that -/is positive definite. Hence, using the second 
set of Eqs. (2.13) once again, we find 

ji = [al~Plkak[i/2 2~r " ~ (Ym -- yOm)~,~n(Yn -- 

(4.5) 

The real and symmetric matrix q~ is given by 

~miaiajcPjn 
C;m~ = r (4.6) ak ~p~lat 
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The fission current has the direction of the vector a. The inequality 
(4.4) and the second set of eigenvalue equations (2.13) imply that for 
H > 0, (a. b) > 0. The definition of ~ in Eq. (2.12) then shows that if y has 
the direction of j (or a), and increases, ~ tends to - ee. This is consistent 
with Eq. (2.15) and the boundary conditions imposed on F. 

The total current I is obtained by integrating ji over the ( n -  1)- 
dimensional hyperplane S through the point (yk ~ with normal vector in the 
direction of j or, equivalently, of a. We observe that q)mna,, = O. This shows 
that the remaining (n - 1) eigenvectors of ~ (which are orthogonal upon a) 
span the hypersurface S. Denoting the associated eigenvalues by Xi (i = 
2 , . . . ,  n) and assuming that all X~ > 0 (this is demonstrated below), we see 
that the calculation of I reduces to an ( n -  1)-fold Gaussian integral. 
Hence, 

(aiai)  1/2 

f n X~ (4.7) I = d s j =  la,~z~akl~/2 �9 2-7" (2~rkT)" i 

The diffusion rate is obtained by dividing I by the normalization of W. The 
latter is evaluated via integration of W around the minimum at x~ = 0, 
where F =  1. Introducing again the variables si,yi, using Eq. (2.1) and 
defining 

<;  = ( a4 (4.8) 
we find that 

~ - 1 / 2  / VB 
~ (2~rkT)"(det W) exp~ ~-~ ) (4.9) 

Hence, the diffusion rate R is given by 

H (akak) '/2 (det W)l/2 exp / VB 
R (4.10) 

2rr lalqalmam]l/2 I - I n = 2 ~ k i l / 2  " ~ - ) 

It remains to show that X i > 0, i ) 2. In doing so, we shall simplify Eq. 
(4.10) further. We write the eigenvalue equation for the matrix q~ of Eq. 
(4.6) in a basis in which ep is diagonal, with eigenvalues q~t > 0 for 1 > 2 and 
% < 0. In this basis, the components of a are denoted by a i. We do not use 
the summation convention. Then 

- - Xz ,  ( 4 . 1  l )  ~izi ~ai  ~ t~ ta  2 
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Simple algebraic manipulations show that the eigenvalues of (~ are the roots 
of the equation 

l -  i Z l % a  2 ~/ ~ ,~} t  (4.12) 

The inequality (4.4) implies ~z%a7 < 0. Moreover, h = 0 is a solution of 
Eq. (4.12), with associated eigenvector a. These statements and the fact that 
% > 0 for l/> 2, q0~ < 0 can be used to show graphically in an elementary 
fashion that the remaining (n - 1) roots of Eq. (4.12) are all positive, with 

(~i < )ki < ~ i+  l , 2 < i < n - 1  
(4.13) 

% < hn 

Having demonstrated the positivity of X z for l/> 2, we observe that the 
product ]-IT=2hi can be evaluated directly as follows. Let c 2, e 3 . . . . .  cn be 
the normalized eigenvectors of q? belonging to the eigenvalues X 2 . . . . .  X,, 
respectively. Then, l-Ini=2~ki = I-[n=2(eil~ei). Moreover, the orthogonality of 
the e i implies (e/q3ej) = 8/j(ei~e/). Hence, 

n [ (cir ] 
__I-I2Xi= det {ci~c.~ = det cicpc j 

i =  ( n - - l )  ~" J/  ( n - - l )  ( a ~ a )  

_ 1 det((acpa) (a~ci)) (4.14) 
(acpa) ()~(acpcj) (c/cpcj) 

We have used the definition (4.6) and denoted the dimensionality of the 
matrix of which we take the determinant by a lower index. The last step 
results from straightforward algebra of determinants. Let us assume that a 
is normalized in unity, 

a .  a = 1 ( 4 . 1 5 )  

[The normalization is clearly arbitrary; cf. Eq. (4.10).] Then, the n vectors 
(a, e 2 . . . . .  c~) form an orthogonal matrix O, and we have 

det((aqva) ( a q v e ~ ) ) = ( d e t d ] ( d e t O r ) ( d e ; q ) )  (4.16) 
(,'/) \ (cj~a)  (cj~0ei) \ (n) ] \  (.) 

However, det(,)0 = 1. Putting all this together, we have 

--~2 I hi = detcp _ ]detqv[ (4.17) 
/=2 (arpa) [a+al 

and the rate expression becomes with the help of Eq. (4.15) 

H (det I~) 1/2 "exp / V~ 
R (4.18) 

2-'7 ]detq~ll/2 ~ - }-T ) 
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Recalling the definitions (2.9) and (4.8), we can write this as 

R = ~ (  det W l l/2. e x p ( -  V8 ~ ) (4.19) 

Although we have evaluated R in the frame of coordinates y 1 . . . . .  y , ,  
s l , . . . ,  s, the result remains the same in the original frame x I . . . . .  x,,  
u I , . . . ,  u~. This follows from the fact that 

;: ;: ) R =  d t l n  dy, . . . dy, ~ds 1 . . .  ds, W (4.20) 

where v is the volume of y space containing the point Yi = 0 and bounded 
by the hypersurface S. The coordinate transformation (2.5) leaves R 
invariant. 

5. DISCUSSION AND SUMMARY 

We have shown that the width for fission over an n-dimensional 
potential barrier has the form 

h e x p ( _  VB )1/2. F / =  ~-~ �9 ~__f ) .  ( d e t W  H (5.1) 

Here, V B > 0 is the height of the fission barrier, W~j is the positive definite 
matrix which defines via Eq. (2.1) the parabolic approximation to the 
potential surface near the minimum at x i = 0, and V~j is the matrix which 
defines via Eq. (2.3) the parabolic approximation to the potential surface 
near the saddle point at x ~ The constant H is the only positive root of the 
equation 

det(H2M + lift + V) = 0 (5.2) 

Here, M is the mass tensor, fl the positive definite friction tensor, and H 
obeys the inequalities 

0 ~< H < [q~ll 1/2 (5.3) 

where e& < 0  is the only negative eigenvalue of the matrix q~= 
M -1/2VM -1/2 

These results obviously generalize the Kramers result of Eqs. (1.1)- 
(1.5) in a very satisfactory fashion. The dynamical factor (det W/Idet  V]) 1/z 
describes the geometry of the fission valley and is independent of the 
friction tensor. Qualitatively speaking (det W/[det  V[) I/2 is bigger (smaller) 
than the corresponding factor (W/[ V[) 1/2 in one dimension if the fission 
valley gets wider (more narrow) as we approach the saddle point. This is 
seen by expressing both determinants in terms of the eigenvalues of the 
matrices W and V. The factor H, limited by the inequalities (5.3), depends 
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on the specific values of the three matrices M, fi, and V. In the context of 
the nuclear fission problem, a discussion of this dependence forms the 
subject of a separate paper. ~7) 
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